Breaking the O(m2n) Barrier for Minimum Cycle Bases
نویسندگان
چکیده
We give improved algorithms for constructing minimum directed and undirected cycle bases in graphs. For general graphs, the new algorithms are Monte Carlo and have running time O(mω), where ω is the exponent of matrix multiplication. The previous best algorithm had running time Õ(m2n). For planar graphs, the new algorithm is deterministic and has running time O(n2). The previous best algorithm had running time O(n2 logn). A key ingredient to our improved running times is the insight that the search for minimum bases can be restricted to a set of candidate cycles of total length O(nm).
منابع مشابه
A Faster Deterministic Algorithm for Minimum Cycle Bases in Directed Graphs
We consider the problem of computing a minimum cycle basis in a directed graph. The input to this problem is a directed graph G whose edges have non-negative weights. A cycle in this graph is actually a cycle in the underlying undirected graph with edges traversable in both directions. A {−1,0,1} edge incidence vector is associated with each cycle: edges traversed by the cycle in the right dire...
متن کاملFaster Randomized and Deterministic Algorithms for Minimum Cycle Bases in Directed Graphs
We consider the problem of computing a minimum cycle basis in a directed graph. The input to this problem is a directed graph G whose edges have non-negative weights. A cycle in this graph is actually a cycle in the underlying undirected graph with edges traversable in both directions. A {−1,0,1} edge incidence vector is associated with each cycle: edges traversed by the cycle in the right dire...
متن کاملAn Õ(m2n) Randomized Algorithm to Compute a Minimum Cycle Basis of a Directed Graph
We consider the problem of computing a minimum cycle basis in a directed graph G. The input to this problem is a directed graph whose arcs have positive weights. In this problem a 1 0 1 incidence vector is associated with each cycle and the vector space over generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. ...
متن کاملFaster Algorithms for Minimum Cycle Basis in Directed Graphs
We consider the problem of computing a minimum cycle basis in a directed graph. The input to this problem is a directed graph G whose edges have nonnegative weights. A cycle in this graph is actually a cycle in the underlying undirected graph with edges traversable in both directions. A {−1, 0, 1} edge incidence vector is associated with each cycle: edges traversed by the cycle in the right dir...
متن کاملUnion of all the minimum cycle bases of
The perception of cyclic structures is a crucial step in the analysis of graphs. To describe the cycle vector space of a graph, a minimum cycle basis can be computed in polynomial time using an algorithm of Horton, 1987]. But the set of cycles corresponding to a minimum basis is not always relevant for analyzing the cyclic structure of a graph. This restriction is due to the fact that a minimum...
متن کامل